Overview

  1. Description of aims of package
  2. Testing Rcpp package
  3. Reducing SNP sites in Uganda study

1. Description of aims of package

McCOILR is simply an Rcpp implementation of [THEREALMcCOIL] (https://github.com/Greenhouse-Lab/THEREALMcCOIL), which was written solely to make running the software easier within the cluster framework I use. All rights refer to the writers of the original c code.

The package can be installed as follows, assuming devtools has been installed.

## first let's install the package
# devtools::install_github("OJWatson/McCOILR")

## Load the package
library(McCOILR)

2. Testing Rcpp package

The package carries out the same 2 R functions as before, which are demonstrated below:

## categorical test

# read in demo data and view it
data0 = read.table(system.file("extdata","cat_input_test.txt",package="McCOILR"), head=T)
data=data0[,-1]
rownames(data)=data0[,1]

# view the heterozygosity calls
head(data)
##      site1 site2 site3 site4 site5 site6 site7 site8 site9 site10 site11 site12
## ind1   1.0   0.5     1     0     1   0.0    -1  -1.0  -1.0      0    1.0      0
## ind2   0.0   0.5     1     1     1   0.0    -1   0.0  -1.0      0    0.5     -1
## ind3   0.5   0.0     1     1    -1   0.0     1   0.5  -1.0      0    0.5      0
## ind4   0.5   0.0     1    -1     1   0.0     1   0.0  -1.0      0    1.0      0
## ind5   0.5   0.0     1     1     1   0.0     1   0.5   0.5      0    0.5      0
## ind6  -1.0   0.0     1    -1    -1   0.5    -1   0.0  -1.0      0    1.0     -1
##      site13 site14 site15 site16 site17 site18 site19 site20 site21 site22
## ind1    1.0    1.0     -1      1      0      1      0     -1    0.5   -1.0
## ind2    0.5    1.0     -1      1     -1      1     -1     -1    0.0    1.0
## ind3    0.5    0.0     -1      1      0      1     -1     -1    0.0    1.0
## ind4    0.0    1.0     -1      1      0      1      0      1    0.0    1.0
## ind5    0.5    0.5      0      1     -1      1     -1      1    0.5    0.5
## ind6   -1.0   -1.0     -1      1     -1     -1     -1     -1   -1.0    1.0
##      site23 site24 site25 site26 site27 site28 site29 site30 site31 site32
## ind1      1    0.5      1   -1.0   -1.0   -1.0      1    0.5      1      1
## ind2      1    0.5      1   -1.0    0.0   -1.0      1    0.5      1      1
## ind3      1    0.5      1   -1.0    1.0    1.0      1    0.5      1      1
## ind4      1    1.0      1    0.5    1.0    0.5      1    1.0      1      1
## ind5      1    1.0      1    0.5    0.5    0.5      1    0.0      1      1
## ind6      1   -1.0      1   -1.0   -1.0   -1.0      1    0.5     -1     -1
##      site33 site34 site35 site36 site37 site38 site39 site40 site41 site42
## ind1      1    0.5      1   -1.0      1    0.0      0     -1      0   -1.0
## ind2      1    0.5      0   -1.0     -1    0.5      1     -1     -1   -1.0
## ind3      1    0.0      1    0.0     -1    0.5      0      1     -1   -1.0
## ind4      1    0.0      1    0.0     -1    0.5      0     -1      0   -1.0
## ind5      1    1.0      1    0.5      1    0.0      0      0      0    0.5
## ind6     -1    1.0     -1   -1.0     -1   -1.0      0     -1     -1   -1.0
##      site43 site44 site45 site46 site47 site48 site49 site50 site51 site52
## ind1      0      1    1.0     -1    0.5      0    0.5     -1      0    0.5
## ind2      0      1    1.0     -1    1.0      0   -1.0      0      0    1.0
## ind3      0      1    0.5     -1    1.0      0   -1.0      0      0   -1.0
## ind4      0      1    0.0     -1    0.5      0    1.0      0      0    0.0
## ind5      0      1    0.5      0    0.5      0    1.0      0      0    0.5
## ind6      0      1   -1.0     -1   -1.0     -1   -1.0      0      0   -1.0
##      site53 site54 site55 site56 site57 site58 site59 site60 site61 site62
## ind1      0    0.0    0.5      1      1     -1    1.0     -1    0.0      1
## ind2      0    0.5    0.0      1      1     -1    0.5     -1    0.0      1
## ind3      0    0.0    0.0     -1      1     -1    0.5     -1    0.0      1
## ind4      0    0.0    0.0      1      1      1    1.0      1    0.0      1
## ind5      0    0.5    0.0      1      1      1    0.5      1    0.0      1
## ind6      0   -1.0    0.0     -1      1     -1   -1.0     -1    0.5      1
##      site63 site64 site65 site66 site67 site68 site69 site70 site71 site72
## ind1      0    1.0   -1.0      1      1     -1    0.0    0.0      0      1
## ind2      0    1.0   -1.0      1     -1      0    0.0    0.5      0     -1
## ind3      0    1.0    0.5      1     -1      0    0.5    1.0      0     -1
## ind4      0    1.0   -1.0      1      1      1    0.0    0.0      0     -1
## ind5      0    1.0    0.0      1      1     -1    0.0    0.0      0      1
## ind6      0    0.5   -1.0     -1     -1      0   -1.0    0.5     -1     -1
##      site73 site74 site75 site76 site77 site78 site79 site80 site81 site82
## ind1      0     -1      1     -1    0.0    0.5    0.0      0    0.0    0.0
## ind2      0     -1      1     -1   -1.0    0.5    1.0     -1    0.5    0.0
## ind3      0     -1      1     -1   -1.0    0.5    0.5     -1    0.0    0.5
## ind4      0      1      0     -1    1.0    1.0    1.0      0    0.0    0.0
## ind5      0     -1      1      1    0.5   -1.0    0.5     -1    0.0    0.0
## ind6      0     -1      1     -1   -1.0    0.0    0.0     -1    0.0   -1.0
##      site83 site84 site85 site86 site87 site88 site89 site90 site91 site92
## ind1    0.5      0      0      0      0      1      1      0      0      0
## ind2   -1.0      0      0     -1      0      1     -1     -1     -1      0
## ind3   -1.0      0      0     -1      0      1     -1      0     -1      0
## ind4    1.0      0      0      0      0      1      1      0     -1      0
## ind5    0.5      0      0      0      0      1      1      0      0      0
## ind6   -1.0      0     -1     -1      0     -1     -1     -1     -1      0
##      site93 site94 site95 site96 site97 site98 site99 site100 site101 site102
## ind1   -1.0      1      0      1    0.5   -1.0     -1      -1     0.0       1
## ind2   -1.0      1      0      1    0.0    1.0      0       1     0.0       1
## ind3   -1.0      1      0      1    1.0    0.5      0       1     0.0       1
## ind4    0.5      1      0      1    1.0    1.0      0       1     0.0       1
## ind5    0.0      1      0      1    0.5    0.5     -1      -1     0.0       0
## ind6   -1.0      1     -1      1    1.0   -1.0      0       1     0.5      -1
##      site103 site104 site105
## ind1       1      -1      -1
## ind2       1      -1      -1
## ind3       1      -1      -1
## ind4       1       0      -1
## ind5       1       0       1
## ind6      -1       0      -1
# create results directory and run analysis
dir.create(path = "cat_output")
out_cat <- McCOIL_categorical(data,maxCOI=25, threshold_ind=20, threshold_site=20,
totalrun=1000, burnin=100, M0=15, e1=0.05, e2=0.05,
err_method=3, path="cat_output", output="output_test.txt" )
## Time = 1.00 s
## proportional test

# read in demo data and view it
dataA1i = read.table(system.file("extdata","prop_dataA1_test.txt",package="McCOILR"), head=T)
dataA2i = read.table(system.file("extdata","prop_dataA2_test.txt",package="McCOILR"), head=T)
dataA1= dataA1i[,-1]
dataA2= dataA2i[,-1]
rownames(dataA1)= dataA1i[,1]
rownames(dataA2)= dataA2i[,1]

# view the read counts
head(dataA1)
##         site1    site2     site3    site4     site5    site6    site7    site8
## ind1 0.773019 0.435251  6.523575 5.529429 10.301879 0.635886 0.000000 4.634959
## ind2 0.997224 0.336538  0.000000 0.254333  0.642381 0.535586 0.061059 6.542795
## ind3 4.476989 1.684320  2.130197 4.353612  0.524203 0.249656 0.080993 2.019209
## ind4 7.815435 3.313494 12.697070 8.285221  3.011241 1.013239 0.037105 6.032118
## ind5 7.931132 0.442517  0.167996 2.177373  0.587036 0.300895 0.030904 1.024954
## ind6 2.458607 0.638248  3.887696 6.067082  9.065840 0.905267 0.081333 4.586606
##         site9    site10    site11   site12   site13   site14   site15    site16
## ind1 0.195470 13.927895  2.363394 5.382498 3.024445 5.423714 0.000000  7.219236
## ind2 0.039037  0.000000 -1.000000 0.754422 3.324416 0.255289 0.001773  0.153461
## ind3 0.000000 11.818180  0.069298 0.673240 3.098849 1.631299 0.030687  2.452794
## ind4 0.000000  8.047423  0.000000 7.221847 2.497320 3.533402 0.000000 11.100150
## ind5 0.081224  6.033347 -1.000000 1.568639 1.279992 0.163047 0.159506  3.586462
## ind6 0.311690  7.699633  2.643740 2.744867 3.400377 6.825433 0.000000  5.841971
##        site17   site18   site19   site20 site21 site22    site23   site24
## ind1 0.000000 0.321880 1.035684 0.000000      0      0  0.000000 6.416304
## ind2 0.000000 0.191307 0.460990 0.000000      0     -1 -1.000000 0.000000
## ind3 0.000000 0.459942 0.837007 0.229977      0      0  0.000000 4.429880
## ind4 0.161285 0.703449 1.271100 0.000000      0      0  0.103252 7.916089
## ind5 0.064790 0.190289 0.379542 0.000000      0      0  0.000000 1.037307
## ind6 0.176968 0.372723 1.110334 0.000000      0      0  0.000000 8.487780
##         site25   site26    site27    site28    site29   site30   site31
## ind1 16.064404 0.197101 10.157699  0.212330  9.499981 9.835422 2.055015
## ind2  1.726730 0.190073  0.000000 -1.000000 -1.000000 4.855352 0.000000
## ind3 11.425260 0.232608  6.536019  0.312552  0.708249 8.368239 2.397373
## ind4  8.395237 0.035063 10.168160  0.157301  8.480841 6.388393 7.613878
## ind5  4.754813 0.007692  3.858720  0.184479  3.152692 5.864166 0.316654
## ind6 13.421972 0.144583  8.898299  0.268645  3.192409 9.806597 5.342317
##        site32   site33   site34   site35   site36   site37    site38   site39
## ind1 5.926235 7.078459 0.000000 0.789787 0.815353 0.000000  0.000000 0.261659
## ind2 0.000000 0.384062 0.000000 0.330539 0.350350 0.218452  0.198614 0.646294
## ind3 9.008590 0.639089 0.019107 0.256107 0.391928 0.000000  0.157776 0.181682
## ind4 6.477691 2.964806 0.594425 1.565033 0.501707 0.476174  0.016512 2.729292
## ind5 0.477997 0.202001 0.000000 0.321333 0.275677 7.588091 -1.000000 0.005372
## ind6 7.105007 7.560561 0.000000 4.308457 0.590327 0.000000  0.000000 0.805857
##        site40   site41   site42    site43   site44   site45   site46    site47
## ind1 6.073929 0.000000 0.000000  2.331914 0.000000 3.208030 1.332707  7.534703
## ind2 0.250292 1.099951 0.041389  2.158835 0.000000 3.220459 0.940977  7.443709
## ind3 1.581731 0.082319 0.000000  2.443111 0.000000 3.197772 0.273793  3.723208
## ind4 4.065335 0.599497 0.000000 10.687130 0.000000 4.860701 0.768297 10.746410
## ind5 2.848523 0.271334 0.000000  0.201186 2.899116 1.124923 0.000000  4.235002
## ind6 7.973652 0.000000 0.000000  5.407707 0.000000 3.657817 1.061532  6.957743
##        site48    site49   site50    site51    site52 site53   site54   site55
## ind1 0.332472  8.247594 1.611010  0.211831  2.414855      0 2.047866 5.552769
## ind2 0.737532  8.433792 2.815520 -1.000000  0.073066      0 2.474965 8.368501
## ind3 0.288094  2.569323 4.338393  0.107921  0.256071      0 1.815254 2.822285
## ind4 0.663363 11.933540 6.475605  0.000000  5.014762      0 3.182412 9.823132
## ind5 0.380688  4.981566 3.503463  0.200261 -1.000000      0 2.672133 5.945422
## ind6 0.463582  6.632334 4.134599  0.333725  1.689286      0 3.011802 6.636636
##        site56   site57    site58   site59    site60   site61   site62   site63
## ind1 3.515977 0.000000  5.617321 5.567360  5.889082 0.407831 4.735254 0.212227
## ind2 0.000000 0.000000 -1.000000 4.662254  6.840784 0.643242 0.000000 0.378215
## ind3 1.317744 2.633277  2.067533 3.208334  4.003303 0.183730 0.435801 0.000000
## ind4 5.101557 1.148384  4.601010 9.515062  7.887465 2.409367 2.435037 0.698486
## ind5 1.046215 0.000000 -1.000000 0.136660  4.014484 0.299023 0.272797 0.719106
## ind6 2.838735 0.488921  9.737784 8.436536 10.875579 0.642340 5.458116 0.009906
##         site64   site65   site66 site67   site68    site69   site70 site71
## ind1  4.301725 0.086193 0.195682      0 3.923784  3.012980 0.084219      0
## ind2  0.000000 0.000000 1.024617     -1 4.139583 -1.000000 0.683016      0
## ind3 -1.000000 0.139899 0.000000      0 3.054424  0.778499 2.766324      0
## ind4 12.837560 0.430866 0.102573      0 5.653807  1.565004 4.702235      0
## ind5  0.000000 0.000000 0.494720      0 0.185001  0.102478 0.000000      0
## ind6  8.947218 0.184573 0.226434      0 8.391926  5.339827 0.406806      0
##         site72   site73    site74    site75   site76   site77    site78
## ind1  4.481197 0.736700  7.174779  5.692942 0.117824 5.038420 -1.000000
## ind2  0.080532 0.740144  0.000000 -1.000000 0.180125 4.277511  0.000000
## ind3  2.581468 0.544233  4.176406  0.092368 0.000000 0.442165  0.040142
## ind4  1.237159 1.276951 12.122590  7.206281 0.157702 0.510834  0.000000
## ind5 -1.000000 1.091841  0.000000 -1.000000 0.000000 3.393604 -1.000000
## ind6  7.603121 1.407879 10.076725  9.867932 0.212253 3.497185  0.012627
##        site79   site80   site81   site82    site83   site84   site85   site86
## ind1 1.222317 0.074298 2.925244 4.445084  1.221600 0.000000 2.218825 2.304839
## ind2 0.579069 2.361009 0.299759 0.000000 -1.000000 0.035173 0.000000 0.000000
## ind3 0.361243 0.021137 0.116697 3.949225  0.000000 0.664386 0.000000 0.000000
## ind4 2.107665 0.097928 0.167922 5.304122  0.142190 0.185392 1.107071 0.219858
## ind5 1.105395 0.273618 0.204405 1.739071  0.000000 0.125757 1.898828 0.036527
## ind6 1.730980 6.016359 0.184774 3.817465  0.528938 0.341512 2.321284 2.074875
##        site87   site88   site89   site90   site91   site92   site93   site94
## ind1 0.000000 5.781570 0.731047 2.762129 2.193086 5.669109 4.948302 0.239401
## ind2 3.341576 1.042625 0.570464 1.512688 0.000000 0.206961 2.146975 0.000000
## ind3 2.694466 0.672151 2.886937 1.046025 2.864557 5.115930 3.521272 0.113925
## ind4 3.884768 4.873755 4.610479 3.401538 1.075722 6.348375 5.779720 0.564348
## ind5 4.599888 4.351057 0.915393 2.209481 0.402474 2.972046 3.850597 0.000000
## ind6 1.984991 5.338447 5.046478 2.476585 4.482983 9.222386 4.920970 3.745815
##        site95   site96    site97   site98    site99   site100  site101  site102
## ind1 3.890739  0.88387  0.000000 2.115714  1.017555  0.133018 5.686296 3.520340
## ind2 0.000000 -1.00000 -1.000000 1.289655  0.000000 -1.000000 2.571777 0.482079
## ind3 0.505523  0.00000  2.245503 1.295489  1.101571  0.198458 2.507220 3.057959
## ind4 2.553972  0.00000  0.204393 3.732895  0.682663  0.219620 5.440795 4.996793
## ind5 0.269705 -1.00000  0.000000 2.773473 -1.000000  0.000000 3.429925 0.861018
## ind6 3.310597  0.00000  1.290676 3.431699  2.073178  0.273429 4.014097 3.320495
##        site103  site104   site105  site106  site107
## ind1  1.448558 5.022188  2.554234 4.375710  0.00000
## ind2 -1.000000 3.015142 -1.000000 1.412338 -1.00000
## ind3  4.206432 2.439314  0.000000 2.534611  1.08814
## ind4  7.513086 2.248669  0.375817 5.752069  0.00000
## ind5  0.000000 0.024655 -1.000000 3.745864  0.00000
## ind6  5.106893 2.776721  3.485361 4.850756  0.00000
# create results directory and run analysis
dir.create(path="prop_output")
out_prop <- McCOIL_proportional(dataA1, dataA2, maxCOI=25, totalrun=5000, burnin=100,
M0=15, epsilon=0.02, err_method=3, path="prop_output",
output="output_test.txt" )
## Iter 500 out of 5000
## Iter 1000 out of 5000
## Iter 1500 out of 5000
## Iter 2000 out of 5000
## Iter 2500 out of 5000
## Iter 3000 out of 5000
## Iter 3500 out of 5000
## Iter 4000 out of 5000
## Iter 4500 out of 5000
## Iter 5000 out of 5000
## Time = 20.00 s

The R functions now return the summary outputs, just for ease of looking at the results:

## view summary data.frame for categorical
str(out_cat)
## 'data.frame':    90 obs. of  8 variables:
##  $ file         : chr  "output_test.txt" "output_test.txt" "output_test.txt" "output_test.txt" ...
##  $ CorP         : chr  "C" "C" "C" "C" ...
##  $ name         : chr  "ind1" "ind2" "ind3" "ind4" ...
##  $ mean         : num  4 5 4 2 4 3 5 3 2 8 ...
##  $ median       : num  2 2 2 1 3 3 3 3 2 5 ...
##  $ sd           : num  5 6.33 3.84 4.76 2.83 ...
##  $ quantile0.025: num  2 2 2 1 2 2 2 2 1 3 ...
##  $ quantile0.975: num  20 23 18 20 14 ...
## Have a look at the categorical output COI distribution
hist(as.numeric(as.character(out_cat$mean[out_cat$CorP=="C"])),
main = "Categorical Mean COI", xlab="COI")

## view summary data.frame for proportional
str(out_prop)
## 'data.frame':    144 obs. of  8 variables:
##  $ file         : chr  "output_test.txt" "output_test.txt" "output_test.txt" "output_test.txt" ...
##  $ CorP         : chr  "C" "C" "C" "C" ...
##  $ name         : chr  "ind1" "ind2" "ind3" "ind4" ...
##  $ mean         : num  2 2 2 6 2 4 8 2 2 2 ...
##  $ median       : num  2 2 2 6 2 4 8 2 2 2 ...
##  $ sd           : num  0.3149 0.2021 0.0669 1.2659 0.4597 ...
##  $ quantile0.025: num  2 2 2 4 2 3 5 2 2 2 ...
##  $ quantile0.975: num  3 3 2 9 3 5 13 2 2 3 ...
## Have a look at the proportional output COI distribution
hist(as.numeric(as.character(out_prop$mean[out_cat$CorP=="C"])),
main = "Proportional Mean COI", xlab="COI")