pca_mip_data.Rd
Using the output of impute_mip_data
, principal
component analysis will be condcuted and the resultant components
returned, with the variance in the data explained by each component
and the loadings of each component also returned.
pca_mip_data(dat)
dat | output of |
---|
Invisibly returns a list of class `prcomp` with the following components
"sdev" the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix).
"rotation" the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors). The function princomp returns this in the element loadings.
"center, scale" the centering and scaling used
"x" the value of the rotated data (the centred data multiplied by the rotation matrix) is returned. Hence, cov(x) is the diagonal matrix diag(sdev^2).
"var" the variance in the data explained by each component
"loadings" the loadings of each component
"dat" the raw data used to conduct pca
dat <- dummy_data() dat <- filter_misc(dat = dat) dat <- filter_coverage(dat = dat, min_coverage = 2) dat <- melt_mip_data(dat = dat) dat <- impute_mip_data(dat = dat) pca <- pca_mip_data(dat = dat)